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A standard multidimensional, easy-access data file structure
for Apple II computers

Jakob H. Waterborg and Rodney E. Harrington

Department of Biochemistry, University of Nevada, Reno, NV, U.S.A.

A random access file structure was designed for Apple II microcomputers that allows data storage of more than 65 500
data values at 170 per Kbyte with a dynamic range of nearly 5 orders of magnitude. All or part of the data are easily
accessible from BASIC under ProDOS operating conditions. The file structure accommodates single or multiple data
sets in a single data file. Data values within a file with one set of data may interrelate by equal spacing along a second
coordinate, such as time or space. Multiple data sets in a file can be independent, parallel or interdependent. Each
interdependent data set defines the position of a data point along its coordinate in a two- or multidimensional
registration system. The lowest and highest values of each data set are separately recorded to allow easy manipulation
of even part of the data, e.g. for graphical presentation. The possibility of storing large numbers of data values in a
single file facilitates high-resolution recording of events and simple mathematical manipulation.

Apple II  Microcomputer BASIC ProDOS Random-access text file Multidimensional data file

1. Introduction

The amount of memory accessible in a 64 or 128K
Apple II computer limits severely its use for
analyzing data sets with large numbers of data
values. With a small program and its variables
loaded and occupying 15K bytes of memory, a
single data array with a maximum of only 4000
real values is possible. When such data must be
displayed graphically on screen, a similar program
can use only 2000 to 2500 data values. Commer-
cially available programs show this limitation very
clearly by their limit of 300 to 1000 values. This
clearly indicates that data storage for large num-
bers of data values must be disk-based. Most
disk-based systems for data storage employ
sequential text files for their ease of data entry.
However, this choice limits the accessibility for
data retrieval severely and often requires entry of
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all data values in active computer memory before
any data handling becomes possible.

Although multidimensional data arrays can be
used inside the Apple computer to handle data
points defined by multiple values in multiple di-
mensions, the one-dimensional structure of a
sequential data file is not suited for storage of
such data so that often interdependent data sets
are stored in separate data files. This clearly fur-
ther limits their accessibility for data analysis.

We propose a data file structure that allows a
very large number of data values to be recorded in
a single file and that allows easy retrieval of any
number of individual values. It fully supports data
storage and retrieval of multidimensional data

types.

2. File structure requirements

A file structure for data storage in Apple II com-
puters was developed with a number of specific
criteria in mind.
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(1) It should allow storage of large numbers of
data, but take as small a file size as possible.

(2) It should allow a rapid access to a limited part
of the data since often only part of the data need
to be analyzed.

(3) It should be in a format readily accessible from
a high-level programming language without the
need for machine language routines for storage or
retrieval to allow flexible and adjustable use of
stored data by various program modules.

(4) The data file structure must support storage of
one-, two- and multidimensional data.

(5) It should allow the dynamic recording of at
least 4 orders of magnitude, including negative
values, to accommodate storage of measurements
ranging from —0.500 to +3.500, a range often
obtained during spectroscopic measurements oOr
during densitometric scanning of gels and films

(1].

3. Choice of file type and programming language

Study of options in Apple operating systems and
available file structures, and the need for flexible,
large and fast storage options of hard disk and
RAM disk, lead to the choice of Apple’s ProDOS
operating system which allows full access to a

Bytes : 1-6 7-12 13-18 19-24 25-30 31-36 37-42 4348 49-54 ...
Record : 0 1 2 3 4 5 6 7 8 .
Content : REQORD$ V$(1) V§(2) V$(3) V$(A) V$(5) V$(6) V$(7) V$(8)
Example 1: 20100 20000 20010 20
Example 2: 54000 19000 24000 1%10 ZS(II) 1%20 26(D3 1%30 27(11)

B: .. [ general formila : Bytes = Record# * 6 + 1 to Record# * 6 +6 ].

Rie 3 n2 0l oo oml 2 m3 nib w5 mb Ml w8 mI
C: V$(n—5) V$(n‘2) V$(n-1> V$(n) TYPE C$(1) C$(2) C$(3) CB(4) C$(5) C8(6) CH(7) @) -

El:.. 20000 19500 15000 18500 20001 20005 18500 88000

F2:.. 2080 65000 20100 66000 20002 20003 19000 20100 19996 24000 66000

Fig. 1. Standard data file structure for one- and two-dimen-
sional data. Example I is a one-dimensional data file with 100
data points (NUMBER =100, TYPE =1, RECORD =100), a
decimal displacement value of +5 (C(1)), a minimum data
value of —1500 (C(2)) and a maximum one of 68,000 (C(3)),
and thus real data limits of —0.015 and +0.680. Example 2 is
a two-dimensional data file with 17000 data values in each
data set and thus 34000 records with data values in the file
(NUMBER =17000, TYPE = 2, RECORD = 34000). Data set
1 has a decimal displacement value of +3 (C(1)), a minimum
data value of —1000 (C(2)) and a maximum one of 100 (C(3)),
and thus real data limits of —1.0 and +0.1. Data set 2 has a
decimal displacement value of —4 (C(4)), a minimum data
value of 4000 (C(5)) and a maximum one of 46000 (C(6)), and
thus real data limits of 40000000 and 460000 000.

tree-structured directory and file system [2]. The
wide availability of commercial and public do-
main machine language and ampersand-linked
routines for use from BASIC of additional RAM
capacity and the double-high resolution screen of
192 X 560 pixels for graphical presentation of data,
supported this choice [3,4]. A random-access file
structure was chosen to allow rapid access to any
part of the data, in any order, and its standard
format is shown in Fig. 1. The limit of a ProDOS
random access file is 65 536 records, i.e. maximally
approximately 65 500 data values can be stored in
a single standard file.

4. Choice of a standard data file structure

An essential feature of the data file is that all
values are stored as strings which are at least one
byte shorter than the record length. The last byte
in each record remains empty, or contains a car-
riage return (Control-M ASCII character) in case
of strings of maximum size, to signify the end of a
recorded value. To minimize record size and maxi-
mize data storage capacity, we chose to limit our
strings to represent only positive integer values.
A standard offset is used to easily accommod-
ate negative data. Storage of high-precision optical
density data requires approximately 4 to 5 orders
of magnitude. We chose to represent values from
—2.0000 to +7.9999 OD as integers from 0 to
99999 by applying a shift of 4 positions for the
decimal position in the real value, applying integer
rounding and a subsequent offset of + 20000 (Fig.
2 *). Thus 0.101 OD, multiplied by 10* becomes
1010, rounding gives again 1010 (i.e. no loss of
accuracy), and addition gives 21010. The string
format of this number is then stored. Similarly

* The algorithms for data storage (Fig. 2) and data retrieval
(Fig. 3) from a standard data file are valid for files with any
number of data values (NUMBER) and any number of data
sets (TYPE). The examples specify and dimension for a data
file with two sets of data values (TYPE = 2) with 1000 data
values per set (NUMBER =1000). The choice for decimal
shift values was made prior to data collection and storage
(C(1) and C(4)). The limits of data values (C(2)-C(3) and
C(5)-C(6)) were determined during data storage (Fig. 2,
60-80).



10 DIM VALUE(1000, 2), C(6)

: NUMBER = 1000

3t TYPE( = 2

: RECORD = NUMBER * TYPE
HECEL) &

: C(2) = 99999

: C(3) = 99999

: C(4) = -2

: C(5) = 99999

+ C(6) = 99999

: REM DIMENSION DATA ARRAYS;
SET NUMBER OF DATA VALUES;
SET NUMBER OF DATA SETS OR DATA TYPE CODE;
SET DECIMAL DISPLACEMENT VALUES;
INITIALIZE LOWEST/HIGHEST DATA VALUES AT 99999

20 PRINT CHR$(4) "OPEN" FILENAME ",L6"

: REM CREATE AND OPEN A RANDOM ACCESS DATA FILE WITH A

RECORD LENGTH OF 6 BYTES

30 FOR I = 1 TO NUMBER STEP TYPE
40 FOR J = 1 TO TYPE
50 VALUE = INT ( VALUE(I,J) * 10 " C(3 * J - 2))

: REM SHIFT DECIMAL PLACES AND ROUND

60 IF C(3 * J - 1) = 99999 THEN C(3 * J - 1) = VALUE
: C(3 * J) = VALUE
: REM SET VALUE LIMITS AT FIRST PASS

70 IF VALUE < C(3 * J - 1) THEN C(3 * J - 1) = VALUE
: REM SET MIN VALUE
80 IF VALUE > C(3 * J) THEN C(3 * J) = VALUE
: REM SET MAX VALUE
90 VALUE$ = STR$ ( VALUE + 20000)
100 PRINT CHR$(4) "WRITE" FILENAME ",R" (I - 1) * TYPE 4 J
110 PRINT VALUE$

: REM ENTER STRING IN SPECIFIED RECORD NUMBER
120 NEXT J
130 NEXT I
140 PRINT CHR$(4) "WRITE" FILENAME ",RO"
150 PRINT STR$ ( RECORD + 20000)
: REM ENTER TOTAL NUMBER OF RECORDS WITH DATA VALUES
160 PRINT CHR$(4) "WRITE" FILENAME ",R" RECORD + 1
170 PRINT STR$ ( TYPE + 20000)
: REM ENTER NUMBER OF DATA SETS OR DATA CODE
180 FOR I = 1 TO 3 * TYPE
190 C$(I) = STR$ ( C(I) + 20000)
200 PRINT CHR$(4) "WRITE" FILENAME ",R" RECORD + 1 + I
210 PRINT C$(I)
: REM ENTER CONTROL VALUES FOR DECIMAL DISPLACEMENT AND DATA
LIMITS
220 NEXT I
230 PRINT CHR$(4) "CLOSE"
": REM CLOSE THE DATA FILE

Fig. 2. Example of data storage.

—0.402 and +3.303 OD values are stored as
15980 and 53030. This choice easily covers the
normal range from —0.500 to +3.500 OD with a
extra decimal position to spare for added accu-
racy, not present under normal conditions of spec-
troscopy but usable when data averaging may
yield higher accuracy. Thus data accuracy is fully
maintained while a defined, invariable data length
is specified that allows easy retrieval of data (Fig.
3).

In most biological and biochemical systems, the
dynamic range of nearly 5 orders of magnitude
was generally found to be more than sufficient for
data storage from sources other than spectroscopy
without any loss of accuracy. The step that shifts
decimal positions before integer rounding allows
the use of Standard Units to be carried through
calculations because positive and negative real
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10 DIM VALUE (1000,2), C(7)

: REM DIMENSION DATA ARRAYS
20 PRINT CHR$(4) "OPEN" FILENAME

: REM OPEN THE EXISTING RANDOM ACCESS DATA FILE
30 PRINT CHR$(4) "READ" FILENAME ",RO"
40 INPUT RECORD$
50 RECORD = VAL ( RECORD$) - 20000

: REM GET TOTAL NUMBER OF RECORDS WITH DATA VALUES
60 PRINT CHR$(4) "READ" FILENAME ",R" RECORD + 1
70 INPUT TYPE$
80 TYPE = VAL ( TYPE$) - 20000

: REM GET NUMBER OF DATA SETS OR CODE FOR DATA TYPE
90 FOR I = 1 TO 3* TYPE
100 PRINT CHR$(4) "READ" FILENAME ",R" RECORD + 1 + I
110 INPUT C$(I)
120 C(I) = VAL ( C$(I)) - 20000

: REM GET CONTROL VALUES FOR DECIMAL DISPLACEMENT AND
DATA LIMITS

130 NEXT I
140 NUMBER = RECORD / TYPE

: REM CALCULATE NUMBER OF DATA VALUES PER DATA SET

150 FOR T = 1 TO NUMBER STEP TYPE

160 FOR J = 1 TO TYPE

170 PRINT CHR$(4) "READ" FILENAME ",R" (I - 1) * TYPE + J

180 INPUT VALUE$

190 VALUE(I,J) = ( VAL ( VALUE$ ) - 20000) * 10 * - C(3 * J - 2)

: REM CONVERT ROUNDED INTEGER INTO REAL DATA VALUE
200 NEXT J
210 NEXT I
220 PRINT CHR$(4) "CLOSE"
: REM CLOSE THE DATA FILE

Fig. 3. Example of data retrieval.

numbers ranging from 10~ to 10*33, almost the
maximum range that the Apple processor can
handle, can easily be accommodated.

5. The use of control values

The control values of a data file stored in the first
record (record 0) and in a limited number of
records immediately after the last data value, al-
low for increased flexibility in handling all or part
of the data. Record 0 stores the number of records
filled by data (RECORD), after the standard off-
set of 20000 (Fig. 2). This value is derived from
two other values, the number of data values per
data set (NUMBER) and the number of data sets
in the data file (TYPE). RECORD is limited by
the ProDOS file limit of 65535 so that the stored
string generally will vary between 20001 and
85550. The use of the first record for this value
allows easy access to the size of a data file, and
also to the type of file and its limits because these
values are stored in the records immediately fol-
lowing those with the last data value (Fig. 1).
The first of these records will contain a code
number that specifies the type of data stored
(TYPE), and is generally used to note the number
of data sets or dimensions. Thus one-dimensional
scanning data contain a value string TYPES$ of
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20001, signifying 1 data set with an implicit even
spacing between data points (Fig. 1). In such a file
the first data value is located in record 1, the
second in 2, and the nth data in record n. Two-di-
mensional data store the values of data set 1 in
records 1, 3, 5, ..., 2Xn—1, and the values of
data set 2 in records 2, 4, 6, ..., 2Xn (Fig. 1).
Multiple data sets follow a similar rule.

Record number RECORD + 2 stores in string
C$(1) the number of powers of 10 to be applied to
store real values of the first data set as rounded
integers (Fig. 2). For optical density scanning val-
ues it contains string 20004 so that 0.103 OD x 104
will give the value 1030, to be rounded to the
nearest integer, if required. The maximum range
of C$(1) is 19967 to 20033 because the Apple
processor is limited to real numbers between + 1
X 10%® and + 3 X 10~ . Strings similar to C$(1)
are stored in record RECORD + 5 for the second
data set, in record RECORD + 8 for the third
one, and so on.

Record RECORD + 3 stores the string with the
lowest value of the first data set and record RE-
CORD + 4 stores the string with the highest value.
These lower and upper limits of the data set are
recorded during initial data storage (Fig. 2) and
allow easy graphical manipulation of the data
because it obviates the need to read all data file
values before even a small part of the data can be
graphed. Thus standardized graphical handling
without loss of information outside the screen
limits is possible. The same upper and lower value
limits of additional data sets are stored at RE-
CORD + 6 and RECORD + 7, in RECORD + 9
and RECORD + 10, etc.

6. One-dimensional data files

This type of one-dimensional data file is used for
situations where the value of a single variable is
collected at a equidistant interval such as time or
distance. Such data can be recordings over time or
temperature or of optical density measured by a
densitometer while a polyacrylamide gel, stained
for protein by Coomassie, is passed at a constant
rate between lamp and photomultiplier tube [1]. In
such a system the equal spacing in time of record-

ing optical density is transformed to a equal spac-
ing in space in the gel along the line of scanning.
Thus by only recording the variable dimension, a
greater information density in the data file is
possible, reducing the need for memory expansion
or storage capacity.

7. Two- and multidimensional data files

A significantly different type of data values is
obtained when the change in a first variable re-
sults in a change of a second variable. A data
point is then defined by the coordinates of the
first and second variable. In this case two inde-
pendent sets of data values will define an array of
data points defined by 2 coordinates (2 dimen-
sions). To allow easy access to the two values that
define a data point, we chose to place both values
next to each other (Fig. 1). This greatly facilitates
retrieval of only part of the data points. One can
use almost any type of analysis as an example for
this type of data file, e.g. dose—response results in
pharmacological experiments or changes in optical
density in a DNA preparation which is melted by
a slow and gradual increase in temperature.

This choice of arranging corresponding values
from more than one data set together requires a
decision on the number of data sets that will be
collected, recorded in the control value TYPE,
prior to file storage of any data. Such a choice is
generally known already before data collection is
started. What is often not known, or not precisely
known, is the number of data values that will be
or need to be collected in a data set. The choice to
keep corresponding data values together has the
clear advantage that it leaves open the choice of
the number of data values to be stored until one
chooses to terminate data collection. Of course,
the limits of 65536 records per file and possibly
the available disk storage capacity always apply.

The file structure will also allow data storage of
several independent data sets, for instance in a
situation where both high and low sensitivity de-
tectors are used to record the same variable. In
such a case, the independent but time-correlated
data values are next to each other in a data file
and can more easily be studied together. In other



experimental systems two independent variables
are changed and are recorded together with the
resulting variable. Such a combination of three
interdependent data sets defines a data point in a
three coordinate system. Such multidimensional,
interdependent data sets are also easily accom-
modated within the data file structure, and access
to any part of the data is maintained. The one
choice that must be made is the number entered
for the control value TYPE. In the examples pre-
sented, we used the TYPE value purely to indicate
the number of data sets in a data file. It can also
be a coded value, for instance TYPE =355 can
signify a dose—response two-dimensional interde-
pendent data set with recording of data values
once every minute, so that in fact a third dimen-
sion, time, is recorded without any requirement
for data storage capacity.

8. Available software

The data file structure proposed has been imple-
mented in a set of integrated program modules
that were developed primarily to record and
analyze optical density patterns of stained poly-
acrylamide gels or of their fluorographic images
on X-ray film [1]. The number of data values that
can be stored in a data file as proposed is so large
that band resolution and quantitation of 50 upm or
less is attainable for gels as long as 15 or 30 cm. If
the noise level in the recorded data is relatively
high, simple data averaging over a very large num-
ber of initially recorded values can increase data
accuracy while maintaining spatial resolution be-
tween closely spaced protein bands. The large
number of data points that generally span a single
stained protein band allow for a simple but still
accurate determination of peak size by simple data
value addition, so that mathematical approxima-
tions of expected band or peak shape can be
avoided. In case of very high resolution band
analysis, e.g. by application of overlapping Gaus-
sian curves to a patterns of partially overlapping
protein bands [1], a sufficient number of data
values are generally present within a data file, so
that one can decide whether such an analysis
might be required at a much later stage than
otherwise would be possible.
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The integrated set of programs that employ the
described data file structure are collectively named
SCAN.GRAPH. They can be obtained from the
authors for a nominal cost and registration fee.
Several program modules employ fast analog—dig-
ital convertors for multichannel data collection,
while others allow manual data entry or editing.
Utility programs are included that will convert
non-standard data in a sequential text file to the
standard file format, or do the reverse. Double-
high resolution data graphs at 180 X 540-dot reso-
lution allow visual inspection of collected data
and graphical editing by background subtraction,
selection of part of the data and mathematical
data filtering. Quantitation of peak areas at
single-value screen resolution is supported. All
programs are written in BASIC and can easily be
adapted to specific hardware conditions. They will
function on Apple Ile and //c machines with
128K RAM and can be run from 5.25-inch floppy
disks, 3.5-inch micro disks and from any hard disk
under ProDOS.

9. Additional options and alternatives

In specific cases which require a greater dynamic
range than 100000, a longer storage string could
be used with a record length (,L# in line number
20 of Fig. 2) one byte longer than the maximum
length of the storage string. If this increases sig-
nificantly the length of each record, it may be
easier to store strings of real values instead of
rounded ones, because gain in reduced storage
requirements may not be offset by the number of
additional mathematical manipulations required
to store real values as rounded integers (Fig. 2).
For storage of real values, e.g. —1.2345678E + 22,
a record length of 15 must be specified to assure
that the last byte of a record remains empty or
contains a Carriage Return to signify the boundary
with the next record. Compared to the standard
file, such a file would have a 2.5 times larger
storage requirement. Data storage and retrieval
would be slightly faster, and control records with
the position of the decimal point shift like C(1)
would not be required.

If multidimensional data arrays, each with large
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numbers of data values, are to be stored, the
ProDOS limit of 65536 records, and thus data
values, may be too limiting. An option, still essen-
tially retaining the proposed standard file struc-
ture, would be to increase the number of fields per
record from 1 in the standard file structure, to n
with »n being the number of dimensions. Input and
output of data for each record would be more
complicated and slower but still possible. In ad-
dition to using ,Rf to specify the record to write
to or read from, one must also use ,F{ or ,Bf to
specify the field or byte number within the record
to specify the start of writing or reading. In fact,
each record is converted to a sequential type of
mini—file with all the inherent problems of data
retrieval. Such a change would limit the number of
data values for each dimension to approximately
65500. The number of dimensions would be un-
limited as long as the total file size does not
exceed 16M bytes.
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